Learning Attribute-Specific Representations for Visual Tracking
نویسندگان
چکیده
منابع مشابه
P58: Visual Working Memory Performance Based on Saccades in Children with and without Specific Learning Disorder: An Eye-Tracking Study
Some of the previous studies show that children with SLD have deficits in visual processing and working memory. Hence, the aim of this research was to investigate problems of visual working memory based on behavioral neuroscience method, using an eye tracker device. The method of present study was ex-post facto study. The participants included couple of twelve children with SLD (mean age=10.92)...
متن کاملColoring Channel Representations for Visual Tracking
Visual object tracking is a classical, but still open research problem in computer vision, with many real world applications. The problem is challenging due to several factors, such as illumination variation, occlusions, camera motion and appearance changes. Such problems can be alleviated by constructing robust, discriminative and computationally efficient visual features. Recently, biological...
متن کاملImage representations for visual learning.
Computer vision researchers are developing new approaches to object recognition and detection that are based almost directly on images and avoid the use of intermediate three-dimensional models. Many of these techniques depend on a representation of images that induce a linear vector space structure and in principle requires dense feature correspondence. This image representation allows the use...
متن کاملSpectral attribute learning for visual regression
A number of computer vision problems such as facial age estimation, crowd counting and pose estimation can be solved by learning regression mapping on low-level imagery features. We show that visual regression can be substantially improved by two-stage regression where imagery features are first mapped to an attribute space which explicitly models latent correlations across continuously-changin...
متن کاملIncremental Learning for Visual Tracking
Most existing tracking algorithms construct a representation of a target object prior to the tracking task starts, and utilize invariant features to handle appearance variation of the target caused by lighting, pose, and view angle change. In this paper, we present an efficient and effective online algorithm that incrementally learns and adapts a low dimensional eigenspace representation to ref...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33018835